SIOM OpenIR  > 信息光学与光电技术实验室
Pixelated Source Mask Optimization Based on Multi Chromosome Genetic Algorithm
Yang CX(杨朝兴); Li SK(李思坤); Wang XC(王向朝); yangcoloy@siom.ac.cn; wxz26267@siom.ac.cn
2016
Source Publication光学学报
Volume36Issue:8Pages:811001
AbstractA pixelated source mask optimization (SMO)method based on multi chromosome genetic algorithm (GA)is introduced.This method uses multi chromosome genetic algorithm to optimize the pixelated source and pixelated mask simultaneously.In comparison with the single chromosome GASMO method that uses rectilinear mask representation,multi chromosome GASMO method can get high imaging quality and fast convergence speed. Simulation results show that the multi chromosome method can get an optimum solution with the fitness value is 7.6%,which is smaller than that of the single chromosome method.The multi chromosome method only needs 132 generations to converge to an optimal result with the fitness value of 5200,127generations less than the single chromosome method,and the optimization convergence speed is accelerated.
SubtypeArticle
Other Abstract提出了一种基于多染色体遗传算法(GA)的像素化光源掩模优化(SMO)方法。该方法使用多染色体遗传算法,实现了像素化光源和像素化掩模的联合优化。与采用矩形掩模优化的单染色体GASMO方法相比,多染色体GASMO方法具有更高的优化自由度,可以获得更优的光刻成像质量和更快的优化收敛速度。典型逻辑图形的仿真实验表明,多染色体方法得到的最优光源和最优掩模的适应度值比单染色体方法小7.6%,提高了光刻成像质量。仿真实验还表明,多染色体方法仅需132代进化即可得到适应度值为5200的最优解,比单染色体方法少127代,加
Department信息光电
DOI10.3788/AOS201636.0811001
Funding Organization国家自然科学基金 ; 国家自然科学基金 ; 国家自然科学基金 ; 国家自然科学基金
Indexed ByCSCD
Funding Organization国家自然科学基金 ; 国家自然科学基金 ; 国家自然科学基金 ; 国家自然科学基金
WOS IDCSCD:5777797
CSCD IDCSCD:5777797
Citation statistics
Document Type期刊论文
Identifierhttp://ir.siom.ac.cn/handle/181231/28517
Collection信息光学与光电技术实验室
Corresponding Authoryangcoloy@siom.ac.cn; wxz26267@siom.ac.cn
Affiliation中国科学院上海光学精密机械研究所
Recommended Citation
GB/T 7714
Yang CX,Li SK,Wang XC,et al. Pixelated Source Mask Optimization Based on Multi Chromosome Genetic Algorithm[J]. 光学学报,2016,36(8):811001.
APA 杨朝兴,李思坤,王向朝,yangcoloy@siom.ac.cn,&wxz26267@siom.ac.cn.(2016).Pixelated Source Mask Optimization Based on Multi Chromosome Genetic Algorithm.光学学报,36(8),811001.
MLA 杨朝兴,et al."Pixelated Source Mask Optimization Based on Multi Chromosome Genetic Algorithm".光学学报 36.8(2016):811001.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[杨朝兴]'s Articles
[李思坤]'s Articles
[王向朝]'s Articles
Baidu academic
Similar articles in Baidu academic
[杨朝兴]'s Articles
[李思坤]'s Articles
[王向朝]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[杨朝兴]'s Articles
[李思坤]'s Articles
[王向朝]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.