SIOM OpenIR  > 中科院强激光材料重点实验室
Studies on the key methods for compressive ghost-image tracking based on background subtraction
Zhang Leihong; Kang Yi; Li Bei; Zhan Wenjie; Zhang Dawei; Ma Xiuhua; ky930827@sina.com
2017
发表期刊Ukr. J. Phys. Opt.
卷号18期号:3页码:143
摘要Efficient object tracking represents a technology important for many vision applications. It is known that ghost imaging (GI) has a great potential if compared with a standard imaging and solves many problems in case if the common object tracking cannot be carried out. Here we show how the techniques of compressive GI and background subtraction can achieve object tracking. First, object information is captured with the GI. A characteristic measured for an object is obtained by subtracting background in the compressed domain. This characteristic uses compressive sensing to reconstruct the object image. Then the object image is projection-positioned to obtain the corresponding centroid coordinates. At last, the object trajectory is recovered with a polynomial fit, thus providing successful object tracking. Our simulation experiments suggest that the technique can track objects accurately under condition of low sampling ratios. Moreover, it decreases drastically the number of measurements needed for reconstruction and improves the tracking efficiency.
文章类型Article
部门归属材料
收录类别SCI
WOS记录号WOS:000406788600004
引用统计
文献类型期刊论文
条目标识符http://ir.siom.ac.cn/handle/181231/28189
专题中科院强激光材料重点实验室
通讯作者ky930827@sina.com
作者单位中国科学院上海光学精密机械研究所
推荐引用方式
GB/T 7714
Zhang Leihong,Kang Yi,Li Bei,et al. Studies on the key methods for compressive ghost-image tracking based on background subtraction[J]. Ukr. J. Phys. Opt.,2017,18(3):143.
APA Zhang Leihong.,Kang Yi.,Li Bei.,Zhan Wenjie.,Zhang Dawei.,...&ky930827@sina.com.(2017).Studies on the key methods for compressive ghost-image tracking based on background subtraction.Ukr. J. Phys. Opt.,18(3),143.
MLA Zhang Leihong,et al."Studies on the key methods for compressive ghost-image tracking based on background subtraction".Ukr. J. Phys. Opt. 18.3(2017):143.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang Leihong]的文章
[Kang Yi]的文章
[Li Bei]的文章
百度学术
百度学术中相似的文章
[Zhang Leihong]的文章
[Kang Yi]的文章
[Li Bei]的文章
必应学术
必应学术中相似的文章
[Zhang Leihong]的文章
[Kang Yi]的文章
[Li Bei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。