SIOM OpenIR  > 高功率激光物理国家实验室
Total internal reflection orders in transmission grating
Wu R(邬融); Tian YT(田玉婷); Zhao DF(赵东峰); Li DW(李大为); Hua N(华能); Shao P(邵平); 46438131@qq.com
2016
Source Publication物理学报
Volume65Issue:5
AbstractIn a current high-power laser system, transmission grating has been used to sample, separate and focus laser beam. Under high power laser irradiation, besides the 0-order shooting beam and target sampling beam, the detrimental influence of other diffraction orders should be taken into consideration seriously. These useless orders may damage other nearby optical elements and mechanical devices, disturb and confuse the measurement of time pulse and near/far-field intensity. Especially the total internal diffraction order will lead to some series diffraction patterns, causing the above problems. First, relevant theoretical calculation and analysis are carried out for transmission grating (including beam sample grating and focusing grating), which can predict and indicate these inconspicuous diffraction orders. These orders appear on four receiving screens regularly and periodically, and the periodic distance between them is determined by ray-tracing draft. Second, the phenomenon of total internal reflection order is observed and measured by combining with anti-reflection film. The measured periodic spacings on three screens are 24 mm, 26 mm and 35 mm, respectively. Moreover, energy intensities of these redundant orders are measured finely, which shows that their contrasts or SNRs to 0-order main laser is in a range of 10(-8)-10(-4)). Finally, some appropriate and effective approaches to eliminating or avoiding total internal reflection and other useless orders are proposed and discussed, which include 1) coating by anti-reflection film with pre-deep etching; 2) optimizing the grating design to make redundant orders far from target spot; 3) placing laser scattering or absorbing devices at corresponding position to avoid being damaged by the side-leakage energy and ghost image of total internal reflection and other redundant orders.
SubtypeArticle
Other Abstract当前高功率激光装置系统中, 国内使用透射式衍射光栅进行光束采样, 国外甚至使用光栅聚焦并同时结合谐波分离和采样功能. 高功率激光辐照下, 除了0级透射打靶光以及目标取样光外, 其他级次衍射光的影响也不可忽视, 可能造成诸如鬼像聚焦破坏、时间脉宽测量不稳定、近远场测量噪声等问题. 尤其是透射衍射光栅内部全反射级次会导致光栅出射一系列规律的衍射花样, 造成上述干扰和危害. 首先理论上针对透射式光栅(包括取样光栅和聚焦光栅)进行了相应的计算和分析, 然后从实验上观察并测量了取样光栅内部全反射级次的现象, 并且结
Department联合
DOI10.7498/aps.65.054202
Funding OrganizationMajor Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331] ; Major Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331] ; Major Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331] ; Major Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331]
Indexed BySCI
Funding OrganizationMajor Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331] ; Major Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331] ; Major Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331] ; Major Project of the National Science and Technology of the Ministry of Science and Technology of China [GFZX0205010405.2]; Young Scientists Fund of the National Natural Science Foundation of China [11204331]
WOS IDWOS:000377772000012
Citation statistics
Document Type期刊论文
Identifierhttp://ir.siom.ac.cn/handle/181231/27922
Collection高功率激光物理国家实验室
Corresponding Author46438131@qq.com
Affiliation中国科学院上海光学精密机械研究所
Recommended Citation
GB/T 7714
Wu R,Tian YT,Zhao DF,et al. Total internal reflection orders in transmission grating[J]. 物理学报,2016,65(5).
APA 邬融.,田玉婷.,赵东峰.,李大为.,华能.,...&46438131@qq.com.(2016).Total internal reflection orders in transmission grating.物理学报,65(5).
MLA 邬融,et al."Total internal reflection orders in transmission grating".物理学报 65.5(2016).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[邬融]'s Articles
[田玉婷]'s Articles
[赵东峰]'s Articles
Baidu academic
Similar articles in Baidu academic
[邬融]'s Articles
[田玉婷]'s Articles
[赵东峰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[邬融]'s Articles
[田玉婷]'s Articles
[赵东峰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.